Risk Insights Blog

Looking for Something?

Search for posts and comments here.

file (2)

5 assurance analytics challenges to tackle

If you are an assurance leader (internal audit / performance audit / risk assurance), you  want to:

  • Provide assurance to the Board and to management

  • Help maximise value (efficiency, effectiveness, economy) and customer satisfaction

  • Ensure that compliance is maintained

As part of your overall assurance program, analytics can help achieve your objectives, allowing you to find both upside (e.g. revenue leakage) and downside (e.g. control breakdown) opportunities.


Evaluating full data populations - going beyond sampling - vastly improves coverage, and enables higher levels of confidence in results.


Assurance leader thinking about how to achieve better outcomes from analytics

You have implemented analytics.

But something is holding it back.


Something is just not quite working, and you know you can achieve more.





So first you need to find the problem(s). Do any of these sound familiar?


Five assurance analytics challenges:

  1. Access to data - you can't get all the data, or you can't get it quickly enough

  2. Low value - the analysis doesn't provide new insights

  3. False positives - too many of them; results are overwhelmingly noisy, distracting your focus

  4. Superficiality - the results are not deep enough to properly understand / refine the problems or to provide opportunities for improvement

  5. Timing - the results are not available in time for reporting / concluding.

How you can overcome these challenges:

  1. Access to data

    Agility and flexibility in approach: by adopting an iterative approach, you can reduce the burden on management and get to a quicker initial result. A win-win. Start with a small set of data that can help shape an initial set of results; discuss among the audit team and build on it by adding more data if required and exploring in more depth; further discussion, and perhaps debate, then refine with additional data and/or further analysis.

  2. Low value

    Up-front identification of hypotheses: analytics test libraries are old hat. They can be useful in identifying some common tests for specific assurance objectives, but their value-add potential is limited. Ask your team to abandon this outdated approach - focus instead on your organisation's unique strategic objectives and get the team together to brainstorm ideas.

  3. False positives

    There are techniques to deal with these (e.g. supervised machine learning, as outlined in this previous article).

    Access to the right combination of analytics tools, as outlined in a recent article, can help alleviate this problem too.


  4. Superficiality

    Validate assumptions and outcomes as early as possible. In some cases the agility and flexibility in approach outlined above can help overcome this challenge - given the iterative refinement and progressive levels of depth. Avoid over-emphasis on dashboards - the use of visualisation tools (a.k.a. dashboarding) is important and necessary - but if it forms the bulk of your "analytics" effort, without actual underlying data cleansing, blending and analysis, you may end up with superficial results.


  5. Timing

    Try to plan for the analytics work well in advance of the audit - generally 3 months before the audit is due to commence. In some cases, the agility and flexibility in approach outlined above can help - you won't be waiting until the end for results. In some cases, you may need to accept the outcome - particularly if the work was highly experimental; in these cases, make sure to carefully outline the lessons learnt, how to try to avoid the same happening the next time around, then feed that into the planning for future projects.


What else is your team struggling with? And how are you removing those blockers?



This article is part of the assurance analytics series.


Go to the Assurance Analytics Guide


Fin Services Public Sector Assurance / Audit Analytics